基于光动力疗法消融肿瘤的无机纳米材料研究进展

申春姣, 马银玲, 杨晓婷, 向柏, 赵锋

中国药学杂志 ›› 2023, Vol. 58 ›› Issue (21) : 1897-1905.

PDF(1000 KB)
PDF(1000 KB)
中国药学杂志 ›› 2023, Vol. 58 ›› Issue (21) : 1897-1905. DOI: 10.11669/cpj.2023.21.001
综述

基于光动力疗法消融肿瘤的无机纳米材料研究进展

  • 申春姣1, 马银玲1,2, 杨晓婷1, 向柏1*, 赵锋1*
作者信息 +

Research Progress of Inorganic Nanomaterials for Tumor Ablation Based on Photodynamic Therapy

  • SHEN Chunjiao1, MA Yinling1,2, YANG Xiaoting1, XIANG Bai1*, ZHAO Feng1*
Author information +
文章历史 +

摘要

光动力疗法 (photodynamic therapy,PDT) 是一种微创消融肿瘤的新手段。这种手段的优势是可以在对正常组织和器官产生最小副作用的情况下抑制肿瘤。近年来,将纳米粒子与光敏剂组合作为介导PDT的治疗制剂,在肿瘤治疗领域显示出了明显优势。在这方面,金、磁性氧化铁、石墨烯纳米颗粒及其他无机纳米材料引起了人们的关注。这些材料与光敏剂以复合纳米粒的形式结合,降低了体内外正常组织的细胞毒性,改善了其在生物环境中的溶解度,提高了治疗效果。笔者介绍了PDT的基本原理,并总结了以上无机复合纳米材料在PDT中的应用,以期为构建更合理、更有效的整合无机纳米粒的光动力治疗平台提供参考。

Abstract

Photodynamic therapy has been exploited as minimally invasive techniques for ablation of inhibit tumors, which may inhibit tumors with minimal side effects to normal tissues and organs. In recent years, developments of light-mediated approach using nanoparticles and photosensitize (PS) as therapeutic agents may had a crucial role in achieving successful cancer treatment. In this regard, gold, iron oxide, graphene oxide nanoparticles and other inorganic nanoparticles had attracted attention. Moreover, the combination of these materials with PS, in the form of hybrid NPs, reduces in vitro and in vivo normal tissue cytotoxicity, improves their solubility property in the biological environment and enhances the therapeutic effects. This review introduces the mechanisms of photodynamic therapy, summarizes the use of inorganic nanoparticles in photodynamic therapy, thereby providing a reference for the construction of a more reasonable and effective photodynamic therapy platform integrating inorganic nanoparticles.

关键词

光动力疗法 / 无机纳米材料 / 光敏剂 / 单线态氧 / 肿瘤

Key words

photodynamic therapy / inorganic nanomaterial / photosensitizer / singlet oxygen / tumor

引用本文

导出引用
申春姣, 马银玲, 杨晓婷, 向柏, 赵锋. 基于光动力疗法消融肿瘤的无机纳米材料研究进展[J]. 中国药学杂志, 2023, 58(21): 1897-1905 https://doi.org/10.11669/cpj.2023.21.001
SHEN Chunjiao, MA Yinling, YANG Xiaoting, XIANG Bai, ZHAO Feng. Research Progress of Inorganic Nanomaterials for Tumor Ablation Based on Photodynamic Therapy[J]. Chinese Pharmaceutical Journal, 2023, 58(21): 1897-1905 https://doi.org/10.11669/cpj.2023.21.001
中图分类号: R944   

参考文献

[1] WINIFRED NOMPUMELELO SIMELANE N, ABRAHAMSE H. Nanoparticle-mediated delivery systems in photodynamic therapy of colorectal cancer [J]. Int J Mol Sci, 2021, 22(22): 12405. DOI: 10.3390/ijms222212405.
[2] MONTASERI H, KRUGER C A, ABRAHAMSE H. Review: organic nanoparticle based active targeting for photodynamic therapy treatment of breast cancer cells [J]. Oncotarget, 2020, 11(22): 2120-2136.
[3] JI B, WEI M, YANG B. Recent advances in nanomedicines for photodynamic therapy (PDT)-driven cancer immunotherapy [J]. Theranostics, 2022, 12(1): 434-458.
[4] KEENE J P, KESSEL D, LAND E J, et al. Direct detection of singlet oxygen sensitized by haematoporphyrin and related compounds [J]. Photochem Photobiol, 1986, 43(2): 117-120.
[5] HU T, WANG Z, SHEN W, et al. Recent advances in innovative strategies for enhanced cancer photodynamic therapy [J]. Theranostics, 2021, 11(7): 3278-3300.
[6] CASTER J M, CALLAGHAN C, SEYEDIN S N, et al. Optimizing advances in nanoparticle delivery for cancer immunotherapy [J]. Adv Drug Deliv Rev, 2019, 144: 3-15.
[7] PHAM T C, NGUYEN V N, CHOI Y, et al. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy[J]. Chem Rev, 2021,121(21):13454-13619.
[8] COLOMBEAU L, ACHERAR S, BAROS F, et al. Inorganic nanoparticles for photodynamic therapy [J]. Top Curr Chem, 2016, 370(4): 113-134.
[9] MONTASERI H, KRUGER C A, ABRAHAMSE H. Inorganic nanoparticles applied for active targeted photodynamic therapy of breast cancer [J]. Pharmaceutics, 2021, 13(3): 296. DOI: 10.3390/pharmaceutics13030296.
[10] HOU Y J, YANG X X, LIU R Q, et al. Pathological mechanism of photodynamic therapy and photothermal therapy based on nanoparticles [J]. Int J Nanomed, 2020, 15: 6827-6838.
[11] JIN F, WANG H, LI Q, et al. Clinical application of photodynamic therapy for malignant airway tumors in China [J]. Thorac Cancer, 2020, 11(1): 181-190.
[12] YOUNIS M R, HE G, QU J, et al. Inorganic nanomaterials with intrinsic singlet oxygen generation for photodynamic therapy [J]. Adv Sci (Weinh), 2021, 8(21): e2102587. DOI: 10.1002/advs.202102587.
[13] KWIATKOWSKI S, KNAP B, PRZYSTUPSKI D, et al. Photodynamic therapy-mechanisms, photosensitizers and combinations [J]. Biomed Pharmacother, 2018, 106: 1098-1107.
[14] LI G, WANG Q, LIU J, et al. Innovative strategies for enhanced tumor photodynamic therapy [J]. J Mater Chem B, 2021, 9(36): 7347-7370.
[15] DAI J, WU X, DING S, et al. Aggregation-induced emission photosensitizers: from molecular design to photodynamic therapy [J]. J Med Chem, 2020, 63(5): 1996-2012.
[16] LAN M, ZHAO S, LIU W, et al. Photosensitizers for photodynamic therapy [J]. Adv Healthc Mater, 2019, 8(13): e1900132. DOI: 10.1002/adhm.201900132.
[17] Kessel D, Oleinick N L. Cell death pathways associated with photodynamic therapy: an update [J]. Photochem Photobiol, 2018, 94(2): 213-218.
[18] ZHOU Z, SONG J, NIE L, et al. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy [J]. Chem Soc Rev, 2016, 45(23): 6597-6626.
[19] LOVELL J F, LIU T W, CHEN J, et al. Activatable photosensitizers for imaging and therapy [J]. Chem Rev, 2010, 110(5): 2839-2857.
[20] LUCKY S S, SOO K C, ZHANG Y. Nanoparticles in photodynamic therapy [J]. Chem Rev, 2015, 115(4): 1990-2042.
[21] ATTIA M F, ANTON N, WALLYN J, et al. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites [J]. J Pharm Pharmacol, 2019, 71(8): 1185-1198.
[22] TARIGHATNIA A, FOULADI M R, TOHIDKIA M R, et al. Engineering and quantification of bismuth nanoparticles as targeted contrast agent for computed tomography imaging in cellular and animal models [J]. J Drug Deliv Sci Technol, 2021, 66:124018. DOI: 10.1016/j.jddst.2021.102895.
[23] KOBAYASHI H, WATANABE R, CHOYKE P L. Improving conventional enhanced permeability and retention (EPR) effects: what is the appropriate target? [J]. Theranostics, 2013, 4(1): 81-89.
[24] CALIXTO G M, BERNEGOSSI J, DE FREITAS L M, et al. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review [J]. Molecules, 2016, 21(3): 342.
[25] LI Y, LI X, ZHOU F, et al. Nanotechnology-based photoimmunological therapies for cancer [J]. Cancer Lett, 2019, 442: 429-438.
[26] MESQUITA M Q, DIAS C J, GAMELAS S, et al. An insight on the role of photosensitizer nanocarriers for Photodynamic Therapy [J]. An Acad Bras Cienc, 2018, 90(1 Suppl 2): 1101-1130.
[27] LIU J, SHI J, NIE W, et al. Recent progress in the development of multifunctional nanoplatform for precise tumor phototherapy [J]. Adv Healthc Mater, 2021, 10(1): e2001207. DOI: 10.1002/adhm.202001207.
[28] KLEBOWSKI B, DEPCIUCH J, PARLINSKA-WOJTAN M, et al. Applications of noble metal-based nanoparticles in medicine [J]. Int J Mol Sci, 2018, 19(12):4031. DOI: 10.3390/ijms19124031.
[29] CAPEK I. Polymer decorated gold nanoparticles in nanomedicine conjugates [J]. Adv Colloid Interface Sci, 2017, 249: 386-399.
[30] LIU L, XIE H J, MU L M, et al. Functional chlorin gold nanorods enable to treat breast cancer by photothermal/photodynamic therapy [J]. Int J Nanomed, 2018, 13: 8119-8135.
[31] KALYANE D, RAVAL N, MAHESHWARI R, et al. Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer [J]. Mater Sci Eng C Mater Biol Appl, 2019, 98: 1252-1276.
[32] MIOC A, MIOC M, GHIULAI R, et al. Gold nanoparticles as targeted delivery systems and theranostic agents in cancer therapy [J]. Curr Med Chem, 2019, 26(35): 6493-6513.
[33] KADKHODA J, TARIGHATNIA A, BARAR J, et al. Recent advances and trends in nanoparticles based photothermal and photodynamic therapy [J]. Photodiagnosis Photodyn Ther, 2022, 37: 102697. DOI: 10.1016/j.pdpdt.2021.102697.
[34] WU F, LIU Y, WU Y, et al. Chlorin e6 and polydopamine modified gold nanoflowers for combined photothermal and photodynamic therapy [J]. J Mater Chem B, 2020, 8(10): 2128-2138.
[35] CAROBELI L R, MEIRELLES L E F, DAMKE G, et al. Phthalocyanine and its formulations: a promising photosensitizer for cervical cancer phototherapy [J]. Pharmaceutics, 2021, 13(12):2057. DOI: 10.3390/pharmaceutics13122057.
[36] BŁASZKIEWICZ P, KOTKOWIAK M. Gold-based nanoparticles systems in phototherapy-current strategies [J]. Curr Med Chem, 2018, 25(42): 5914-5929.
[37] CAMERIN M, MORENO M, MARíN M J, et al. Delivery of a hydrophobic phthalocyanine photosensitizer using PEGylated gold nanoparticle conjugates for the in vivo photodynamic therapy of amelanotic melanoma [J]. Photochem Photobiol Sci, 2016, 15(5): 618-625.
[38] FREITAS L F, HAMBLIN M R, ANZENGRUBER F, et al. Zinc phthalocyanines attached to gold nanorods for simultaneous hyperthermic and photodynamic therapies against melanoma in vitro [J]. J Photochem Photobiol B, 2017, 173: 181-186.
[39] GARCÍA CALAVIA P, CHAMBRIER I, COOK M J, et al. Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles [J]. J Colloid Interface Sci, 2018, 512: 249-259.
[40] PENON O, MARÍN M J, RUSSELL D A, et al. Water soluble, multifunctional antibody-porphyrin gold nanoparticles for targeted photodynamic therapy [J]. J Colloid Interface Sci, 2017, 496: 100-110.
[41] ALEA-REYES M E, SORIANO J, MORA-ESPÍ I, et al. Amphiphilic gemini pyridinium-mediated incorporation of Zn(II)meso-tetrakis(4-carboxyphenyl)porphyrin into water-soluble gold nanoparticles for photodynamic therapy [J]. Colloids Surf B Biointerfaces, 2017, 158: 602-609.
[42] LIU Z, XIE F, XIE J, et al. New-generation photosensitizer-anchored gold nanorods for a single near-infrared light-triggered targeted photodynamic-photothermal therapy [J]. Drug Deliv, 2021, 28(1): 1769-1784.
[43] ZHANG S, LV H, ZHAO J, et al. Synthesis of porphyrin-conjugated silica-coated Au nanorods for synergistic photothermal therapy and photodynamic therapy of tumor [J]. Nanotechnology, 2019, 30(26): 265102. DOI: 10.1088/1361-6528/ab0bd1.
[44] XU W, QIAN J, HOU G, et al. PEGylated hydrazided gold nanorods for pH-triggered chemo/photodynamic/photothermal triple therapy of breast cancer [J]. Acta Biomater, 2018, 82: 171-183.
[45] LIAW J W, KUO C Y, TSAI S W. The effect of quasi-spherical gold nanoparticles on two-photon induced reactive oxygen species for cell damage [J]. Nanomaterials (Basel), 2021, 11(5): 1180. DOI: 10.3390/nano11051180.
[46] KUROKAWA H, TANINAKA A, YOSHITOMI T, et al. Near-infrared light irradiation of porphyrin-modified gold nanoparticles promotes cancer-cell-specific Cytotoxicity [J]. Molecules, 2022, 27(4): 1238. DOI: 10.3390/molecules27041238.
[47] XU W, QIAN J, HOU G, et al. A dual-targeted hyaluronic acid-gold nanorod platform with triple-stimuli responsiveness for photodynamic/photothermal therapy of breast cancer [J]. Acta Biomater, 2019, 83: 400-413.
[48] YANG Y, WANG S, WANG C, et al. Engineered targeted hyaluronic acid-glutathione-stabilized gold nanoclusters/graphene oxide-5-fluorouracil as a smart theranostic platform for stimulus-controlled fluorescence imaging-assisted synergetic chemo/phototherapy [J]. Chem Asian J, 2019, 14(9): 1418-1423.
[49] YOUSSEF Z, VANDERESSE R, COLOMBEAU L, et al. The application of titanium dioxide, zinc oxide, fullerene, and graphene nanoparticles in photodynamic therapy [J]. Cancer Nanotechnol, 2017, 8(1): 6. DOI: 10.1186/s12645-017-0032-2.
[50] WANG H, ZHOU J, FU Y, et al. Deeply infiltrating iRGD-graphene oxide for the intensive treatment of metastatic tumors through PTT-mediated chemosensitization and strengthened integrin targeting-based antimigration [J]. Adv Healthc Mater, 2021, 10(16): e2100536. DOI: 10.1002/adhm.202100536.
[51] HAN J, FENG Y, LIU Z, et al. Degradable GO-Nanocomposite hydrogels with synergistic photothermal and antibacterial response [J]. Polymer, 2021, 230:124018. DOI: 10.1016/j.polymer.2021.124018.
[52] SHARMA H, MONDAL S. Functionalized graphene oxide for chemotherapeutic drug delivery and cancer treatment: a promising material in nanomedicine [J]. Int J Mol Sci, 2020, 21(17):6280. DOI: 10.3390/ijms21176280.
[53] MA W, YANG H, HU Y, et al. Fabrication of PEGylated porphyrin/reduced graphene oxide/doxorubicin nanoplatform for tumour combination therapy [J]. Poly Int, 2021, 70(9): 1413-1420.
[54] LIANG J, CHEN B, HU J, et al. PH and thermal dual-responsive graphene oxide nanocomplexes for targeted drug delivery and photothermal-chemo/photodynamic synergetic therapy [J]. ACS Appl Bio Mater, 2019, 2(12): 5859-5871.
[55] DOS SANTOS M S C, GOUVêA A L, DE MOURA L D, et al. Nanographene oxide-methylene blue as phototherapies platform for breast tumor ablation and metastasis prevention in a syngeneic orthotopic murine model [J]. J Nanobiotechnol, 2018, 16(1): 9. DOI: 10.1186/s12951-018-0333-6.
[56] MA M, CHENG L, ZHAO A, et al. Pluronic-based graphene oxide-methylene blue nanocomposite for photodynamic/photothermal combined therapy of cancer cells [J]. Photodiagnosis Photodyn Ther, 2020, 29: 101640. DOI: 10.1016/j.pdpdt.2019.101640.
[57] CHOI H W, LIM J H, KIM C W, et al. Near-infrared light-triggered generation of reactive oxygen species and induction of local hyperthermia from indocyanine green encapsulated mesoporous silica-coated graphene oxide for colorectal cancer therapy [J]. Antioxidants (Basel), 2022, 11(1):174. DOI: 10.3390/antiox11010174.
[58] ZHANG J, GE J, SHULTZ M D, et al. In vitro and in vivo studies of single-walled carbon nanohorns with encapsulated metallofullerenes and exohedrally functionalized quantum dots [J]. Nano Lett, 2010, 10(8): 2843-2848.
[59] ZHANG M, MURAKAMI T, AJIMA K, et al. Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy [J]. Proc Natl Acad Sci USA, 2008, 105(39): 14773-14778.
[60] WANG T, WANG C. Functional metallofullerene materials and their applications in nanomedicine, magnetics, and electronics [J]. Small, 2019, 15(48): e1901522. DOI: 10.1002/smll.201901522.
[61] MORENO-LANCETA A, MEDRANO-BOSCH M, MELGAR-LESMES P. Single-walled carbon nanohorns as promising nanotube-derived delivery systems to treat cancer [J]. Pharmaceutics, 2020, 12(9):850. DOI: 10.3390/pharmaceutics12090850.
[62] GAO C, DONG P, LIN Z, et al. Near-infrared light responsive imaging-guided photothermal and photodynamic synergistic therapy nanoplatform based on carbon nanohorns for efficient cancer treatment [J]. Chemistry, 2018, 24(49): 12827-12837.
[63] GAO C, JIAN J, LIN Z, et al. Hypericin-loaded carbon nanohorn hybrid for combined photodynamic and photothermal therapy in vivo [J]. Langmuir, 2019, 35(25): 8228-8237.
[64] THOMAS S C, HARSHITA, MISHRA P K, et al. Ceramic nanoparticles: fabrication methods and applications in drug delivery [J]. Curr Pharm Des, 2015, 21(42): 6165-6188.
[65] KHAN I, SAEED K, KHAN I. Nanoparticles: Properties, applications and toxicities [J]. Arabian J Chem, 2019, 12(7): 908-931.
[66] KESSE S, BOAKYE-YIADOM K O, OCHETE B O, et al. Mesoporous silica nanomaterials: versatile nanocarriers for cancer theranostics and drug and gene delivery [J]. Pharmaceutics, 2019, 11(2):77. DOI: 10.3390/pharmaceutics11020077.
[67] ABU-DIEF A M, ALSEHLI M, AL-ENIZI A, et al. Recent advances in mesoporous silica nanoparticles for targeted drug delivery applications [J]. Curr Drug Deliv, 2022, 19(4): 436-450.
[68] BHARATHIRAJA S, MOORTHY M S, MANIVASAGAN P, et al. Chlorin e6 conjugated silica nanoparticles for targeted and effective photodynamic therapy [J]. Photodiagnosis Photodyn Ther, 2017, 19: 212-220.
[69] HUANG X, WU J, HE M, et al. Combined cancer chemo-photodynamic and photothermal therapy based on ICG/PDA/TPZ-loaded nanoparticles [J]. Mol Pharm, 2019, 16(5): 2172-2183.
[70] LIU Y, PAN Y, CAO W, et al. A tumor microenvironment responsive biodegradable CaCO3/MnO2-based nanoplatform for the enhanced photodynamic therapy and improved PD-L1 immunotherapy [J]. Theranostics, 2019, 9(23): 6867-6884.
[71] HOSSEINZADEH R, KHORSANDI K. Photodynamic effect of Zirconium phosphate biocompatible nano-bilayers containing methylene blue on cancer and normal cells [J]. Sci Rep, 2019, 9(1): 14899. DOI: 10.1038/s41598-019-51359-7.
[72] KAMILA S, MCEWAN C, COSTLEY D, et al. Diagnostic and therapeutic applications of quantum dots in nanomedicine [J]. Top Curr Chem, 2016, 370: 203-224.
[73] TRIPATHI S K, KAUR G, KHURANA R K, et al. Quantum dots and their potential role in cancer theranostics [J]. Crit Rev Ther Drug Carr Syst, 2015, 32(6): 461-502.
[74] MONROE J D, BELEKOV E, ER A O, et al. Anticancer photodynamic therapy properties of sulfur-doped graphene quantum dot and methylene blue preparations in mcf-7 breast cancer cell culture [J]. Photochem Photobiol, 2019, 95(6): 1473-1481.
[75] NENE L C, MANAGA M E, OLUWOLE D O, et al. The photo-physicochemical properties and in vitro photodynamic therapy activity of differently substituted-zinc (Ⅱ)-phthalocyanines and graphene quantum dots conjugates on MCF7 breast cancer cell line [J]. Inorg Chim Acta, 2019, 488: 304-311.
[76] ANAS A, AKITA H, HARASHIMA H, et al. Photosensitized breakage and damage of DNA by CdSe-ZnS quantum dots [J]. J Phys Chem B, 2008, 112(32): 10005-10011.
[77] YONG K T, DING H, ROY I, et al. Imaging pancreatic cancer using bioconjugated InP quantum dots [J]. ACS Nano, 2009, 3(3): 502-510.
[78] BILAN R, NABIEV I, SUKHANOVA A. Quantum dot-based nanotools for bioimaging, diagnostics, and drug delivery [J]. Chem Bio Chem, 2016, 17(22): 2103-2114.
[79] WENG K C, NOBLE C O, PAPAHADJOPOULOS-STERNBERG B, et al. Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo [J]. Nano Lett, 2008, 8(9): 2851-2857.
[80] KADKHODA J, AKRAMI-HASAN-KOHAL M, TOHIDKIA M R, et al. Advances in antibody nanoconjugates for diagnosis and therapy: a review of recent studies and trends [J]. Int J Biol Macromol, 2021, 185: 664-678.
[81] WANG D, FEI B, HALIG L V, et al. Targeted iron-oxide nanoparticle for photodynamic therapy and imaging of head and neck cancer [J]. ACS Nano, 2014, 8(7): 6620-6632.
[82] NAM K C, HAN Y S, LEE J M, et al. Photo-functionalized magnetic nanoparticles as a nanocarrier of photodynamic anticancer agent for biomedical theragnostics [J]. Cancers (Basel), 2020, 12(3):571. DOI: 10.3390/cancers12030571.
[83] ZHANG P, WU G, ZHAO C, et al. Magnetic stomatocyte-like nanomotor as photosensitizer carrier for photodynamic therapy based cancer treatment [J]. Colloids Surf B Biointerfaces, 2020, 194: 111204. DOI: 10.1016/j.colsurfb.2020.111204.
[84] AMIRSHAGHAGHI A, YAN L, MILLER J, et al. Chlorin e6-coated superparamagnetic iron oxide nanoparticle (spion) nanoclusters as a theranostic agent for dual-mode imaging and photodynamic therapy [J]. Sci Rep, 2019, 9(1): 2613. DOI: 10.1038/s41598-019-39036-1.
[85] ZHU W, DONG Z, FU T, et al. Modulation of hypoxia in solid tumor microenvironment with MnO2 nanoparticles to enhance photodynamic therapy [J]. Adv Funct Mater, 2016, 26(30): 5490-5498.
[86] YANG C, LIU Y, SU S, et al. A multifunctional oxygen-producing MnO2-based nanoplatform for tumor microenvironment-activated imaging and combination therapy in vitro [J]. J Mater Chem B, 2020, 8(43): 9943-9950.
[87] LI B, WANG X, HONG S, et al. MnO2 nanosheets anchored with polypyrrole nanoparticles as a multifunctional platform for combined photothermal/photodynamic therapy of tumors [J]. Food Funct, 2021, 12(14): 6334-6347.
[88] ZHANG Y, LV F, CHENG Y, et al. Pd@Au bimetallic nanoplates decorated mesoporous MnO2 for synergistic nucleus-targeted nir-ii photothermal and hypoxia-relieved photodynamic therapy [J]. Adv Healthc Mater, 2020, 9(2): e1901528. DOI: 10.1002/adhm.201901528.
[89] LIU Y, JI M, WANG P. Recent advances in small copper sulfide nanoparticles for molecular imaging and tumor therapy [J]. Mol Pharm, 2019, 16(8): 3322-3332.
[90] WANG L, XU X, MU X, et al. Fe-doped copper sulfide nanoparticles for in vivo magnetic resonance imaging and simultaneous photothermal therapy [J]. Nanotechnology, 2019, 30(41): 415101. DOI: 10.1088/1361-6528/ab2c13.
[91] SHI H, SUN Y, YAN R, et al. Magnetic semiconductor Gd-Doping CuS nanoparticles as activatable nanoprobes for bimodal imaging and targeted photothermal therapy of gastric tumors [J]. Nano Lett, 2019, 19(2): 937-947.
[92] LI Q, REN J, CHEN Q, et al. A HMCuS@MnO2 nanocomplex responsive to multiple tumor environmental clues for photoacoustic/fluorescence/magnetic resonance trimodal imaging-guided and enhanced photothermal/photodynamic therapy [J]. Nanoscale, 2020, 12(23): 12508-12521.
[93] HUANG J, HUANG Y, XUE Z, et al. Tumor microenvironment responsive hollow mesoporous Co9S8@MnO2-ICG/DOX intelligent nanoplatform for synergistically enhanced tumor multimodal therapy [J]. Biomaterials, 2020, 262: 120346. DOI: 10.1016/j.biomaterials.2020.120346.

基金

国家自然科学基金项目资助(81973251); 河北省自然科学基金项目资助(H2021206275);河北省自然科学基金项目资助(H2020307043);河北医科大学大学生创新性实验计划项目资助(USIP2022020,USIP2022095)
PDF(1000 KB)

Accesses

Citation

Detail

段落导航
相关文章

/